Mathematical Models for Microbial Kinetics in Solid-State Fermentation: A Review
نویسندگان
چکیده
Context: In this review, we discuss empirical and stoichiometric models, which have been developed recently in SSF processes and the influence of environmental conditions on the variables of these models. Additionally, new studies on modeling of product formation are also mentioned. Evidence Acquisition: Solid-state fermentation (SSF) is recognized as a cheap process for producing many valuable products like industrial enzymes and bioethanol. To develop, optimize, and scale-up this process, mathematical models are required. In this review, we collected all the papers regarding microbial growth and product formation modeling in SSF. The pros and cons of each model and confirmation with experimental data were also discussed. We discussed here the simple empirical growth kinetics models and the effect of environmental conditions on these models parameters, stoichiometric models and product formation models. Results: Simple empirical models are used widely in the kinetic modeling of SSF processes due to their simplicity and ease of use. However, more studies should be done in this field to make them more accurate, especially; the effect of environmental conditions, like temperature and moisture, on key variables of the model must be considered. Robust modeling methods, like stoichiometric models, are in their early stages in SSF processes and require more studies. Developing models in which transport phenomena models are coupled with the growth kinetics models can help better SSF bioreactor designing. On the other hand, to use SSF for producing valuable products, product formation models, which are not developed well in SSF processes, are necessary. Conclusions: To use SSF for producing valuable metabolites in large scales, more attention is required for modeling the SSF processes, especially for product formation models and using modern methods like stoichiometric models.
منابع مشابه
Mathematical Models for Microbial Kinetics in Solid-State Fermentation: A Review
Context:In this review, we discuss empirical and stoichiometric models, which have been developed recently in SSF processes and the influence of environmental conditions on the variables of these models. Additionally, new studies on modeling of product formation are also mentioned. <span style="color: windowtext...
متن کاملBioremediation of lignocellulosic wastes of food industries by Aspergillus flavus as food and feed additive protein by solid-state fermentation process
The lignocellulosic wastes produced in food industries are suitable raw materials for the production of biological products. In this study, the solid state fermentation of Aspergillus flavus on lignocellulosic wastes was evaluated for microbial protein production. The fraction of the full factorial method was applied for experiment design and process optimization. The results analysis was perfo...
متن کاملXylanase Production under Solid State Fermentation by Aspergillus niger
Central composite orthogonal design was applied to quantify relations of xylanase production, loss of dry matter and change of pH with four critical variables during solid state fermentation of a mixture of wheat bran and wheat straw on which Aspergillus niger CCUG 33991 was cultivated. The studied variables included the percentage of wheat straw, temperature, moisture content, and fermentati...
متن کاملIn vitro Assessment of the Effect of Plant Extracts on Digestibility, Estimated Energy Value, Microbial Mass and Rumen Fermentation Kinetics
Three ethanol extracts, chamomile (CHA), clove (CLO) and tarragon (TAR), were tested at five doses (0, 250, 500, 750 and 1000 µL/L) to determine their effects on in vitro organic matter digestibility (IVOMD), metabolizable energy (ME), net energy of lactation (NEL), short-chain fatty acids (SCFA), microbial mass (MM) and rumen fermentation kinetics of a 40:60 forage: concentrate diet using in v...
متن کاملBatch Kinetics and Modeling of Alkaline Protease Production by Isolated Bacillus sp. (RESEARCH NOTE)
The aim of this study was the use of fish waste hydrolysate (FWH) as a substrate for alkaline protease production using isolated Bacillus sp. in a batch system. Then the fermentation kinetics of enzyme production was studied. The results show that with the addition of FWH to the fermentation medium with a final concentration of 4% (optimal concentration), alkaline protease value reached a maxim...
متن کامل